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Advantage of Backward Error Analysis

The main advantage of backward error analysis for models using ordinary differential equations (ODE) is
that it enables one to find exact solutions to models of real world systems that are just as valid as posed
models that cannot be solved exactly. This is done by treating numerical error as a perturbation just like
physical perturbations, and by ensuring that the perturbations are small and model physical perturbations.

Modeling and Error

In many situations one can formulate useful ODE
models of real world systems of the form

dy

dt
≡ ẏ = f(y, t), (1)

with f(y, t) a nonlinear vector field. There are two
main kinds of error that enter in here. A background
of theories chosen to formulate the model determines
a vector field g(y, t) that we usually do not know or
cannot calculate. Thus, idealizing assumptions and
mathematical simplifications introduce modeling er-

ror µ(y, t) when the model is generated:

ẏ = f(y, t) = g(y, t) + µ(y, t).

Physical error π(y, t) is always present because only
part of the world is included in the model. Interac-
tions between the model system and its environment
perturb the model system. So, the actual system is
described by some perturbed model:

ẏ = g(y, t) + π(y, t).

Numerical Perturbation

Rather than being considered the result of generat-
ing approximate solutions, numerical error can be
considered as a kind of perturbation of the ODE (1).

The use of floating point arithmetic to compute
f(y, t) introduces floating point error φ(y, t). And
the discretization involved in the use of numerical
methods introduces truncation error τ(y, t). A C1

interpolant u(t) of the numerical solution, which we
can always obtain, then satisfies

u̇ = f(u, t)+φ(u, t)+ τ(u, t) = f(u, t)+ δ(u, t). (2)

Thus, numerical error can be seen as a perturbation
δ(u, t) of the original equation (vector field) (1). u(t)
is the exact solution of the modified model (2).

Backward Error for ODE

When obtaining a C1 numerical solution u(t)
we usually want to ensure that the global error

y(t) − u(t) is small. This is the forward error, the
difference between the actual solution and the com-
puted one. Without knowing the exact solution y(t),
however, we cannot calculate the error.

The approach of backward error analysis is to find a
modified problem to which u(t) is the exact solution.
This done by calculating the backward error or defect

δ(u, t):
δ(u, t) := u̇ − f(u, t), (3)

the same quantity appearing in equation (2).

Phase portrait for the van del Pol equation, with vector field
(arrows) and solutions (curves) displayed.

A small defect translates into a small global er-
ror provided that small perturbations of the ODE
(1) lead to only small variations of the solution.
Equations that have this property are called well-

conditioned. In such a case, controlling the defect
indirectly controls the global error.

Many problems, however, are ill-conditioned, i.e.

small perturbations result in large variations of the
solution. Chaotic problems, due to their sensitiv-
ity to initial conditions, are classic examples of ill-
conditioned problems. For such problems we cannot
control the global error, but BEA can still be useful
(see ‘well-enough conditioning’).

Forms of BEA for ODE

Defect Control

Defect analysis works by modifying the (vector field
of the) ODE (1) and holding the (initial, boundary,
or algebraic) conditions on it fixed. This is a natural
approach since C1 interpolants can be computed for
any numerical method, enabling the defect to be used
to control the error of the method.

The images below are the result of applying a Mat-

lab code ode1d, a defect-controlled Euler method
using piecewise cubic Hermite interpolation, to the
unforced van der Pol equation with ǫ = 2.

Van der Pol equation solved using defect-controlled ode1d
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Shadowing

Shadowing works for initial value problems by modi-
fying the initial conditions of a problem while leaving

the equation (vector field) fixed. The main task in
shadowing is to show that the numerical method fol-
lows an exact solution of the specified problem with
perturbed initial conditions for some period of time.

This method is well suited to problems where the
equations of motion are very well-known and/or the
physical and modeling error are negligible, so we are
interested in exact solutions to the original problem.

Method of Modified Equations

This approach works by modifying both the equa-
tion (vector field) and the conditions on it. This ap-
proach uses both the specified equation and the equa-
tions defining the numerical method to determine the
equation and conditions of a modified problem, which
models the behaviour of the numerical solution better
than the original problem does.

This approach is useful in order to better understand
the behaviour of numerical methods and in the gener-
ation of numerical methods that preserve the geomet-
ric properties of certain problems, e.g. Hamiltonian
problems.

Well-Enough Conditioning

For models of real world systems we require that
whichever quantities are of interest, which need not
be the forward error, are stable under perturbations
of the problem. This kind of stability is necessary
for a model to be useful at all, because modeling and
physical error are always present to some degree.

Problems where quantities of interest do not vary
significantly for small perturbations of the problem
are called well-enough conditioned.

The reason that BEA is useful on chaotic problems
is that provided the problem is well-enough condi-
tioned, e.g. the first Lyapunov exponent is stable,
then by keeping the defect smaller than sources of
physical perturbation, we can ensure that the nu-
merical solution is the exact solution to just as valid
a problem as the problem initially specified.

Obtaining Valid Solutions

Consider a space of problems of the form (1), where
the points are the possible vector fields f(y, t). The
presence of physical perturbations ensures that there
is an entire neighbourhood of valid problems around
the specified one, the size of which is determined by
the size of π(y, t) (see ‘modeling and error’).

Thus, provided we can ensure that ‖δ(u, t)‖ ≪
‖π(y, t)‖, which we can with the precision available
on most computers, we can be assured that our nu-
merical solution solves a valid problem exactly.

To be sure that we have solved just as valid a prob-
lem, we must in general ensure that the numerical
perturbation models a reasonable physical pertur-
bation. This is usually possible; for example, many
numerical methods can be made to dissipate energy
very slowly (using geometric numerical methods).
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